

�

�

�

�

�

�

�

�

�

����� �

���	
�����������
���

����

����

����

�

�

�

�

�

�

�

�

�

�

�

�

�	
��������	������������������������� ������������

���	�������� ������������	�

�

�

Preparation of this publication was supported by a contract from
All Kids Count, a program of The Robert Wood Johnson Foundation.

�

�

�

�

�

�

�

�

�

�������������������� ����

���	
�����������
�����	
�����������
�����	
�����������
�����	
�����������
������

����

����

�

�

�

�

�

�

�

�

�

�

�

�

�

����	���� ���� ��!�"	����

�

�

�	
��������	������������������������� ������������

���	�������� ������������	�

�

������ #���$%%$

 ii

This publication was supported by a contract from All Kids Count, a program of The
Robert Wood Johnson Foundation, to the Utah Department of Health. The views,
content and citations reflect those of the Utah Department of Health.

Ordering Information
This publication is available online at the All Kids Count web site, www.allkidscount.org.

Copyright © 2002 by All Kids Count, Center for Innovation in Health Information
Systems. All rights reserved.

 iii

�

Table of Contents

1. Introduction ...1
2. CHARM-II Overview ...2
2.1. System Context.. 2

2.2. Goals for CHARM-II.. 3

2.3. Architectural Overview .. 4

3. CHARM Server...6
3.1. Use Scenarios... 6

3.2. CHARM Server Components and Their Interactions 8

4. CHARM Agents ... 17
4.1. Agent Components.. 17

4.2. Agent Interactions... 18

5. Alert Engine.. 23

 1

1. Introduction
�

Over the past six years, the Utah Department of Health (UDOH) has developed and deployed a
number of health-care information systems, including: Heel-Stick (metabolic) Screening, Utah
Statewide Immunization Information System (USIIS), Early Hearing Detection and Intervention
(EHDI), Vital Statistics (VS), Birth Defects (BD), and Women, Infant, and Children (WIC).
Utah also is in the process of developing an Early Intervention (EI) information system. Each of
these systems belongs to a corresponding health-care program, which is responsible for
managing that data.

With the exception of some rudimentary links between a few of these information systems, they
currently operate independently. Tighter integration among them, however, would improve
UDOH’s service quality by allowing users of one system to have immediate access to
information currently found only in another. For example, EHDI users would improve their
follow-up efficiency if they had immediate access to contact information for a child’s primary-
care provider available in USIIS. Similarly, EI users would benefit from hearing screening data
in EHDI, and WIC users could benefit from immunization information in USIIS. Without
exception, users of every health-care information system could benefit in some way from access
to data in at least one other.

Child Health Advanced Record Management (CHARM) is a concerted effort to share data
among health-care information systems in real-time. The shared data for a child constitutes a
virtual health-care record that we call the Child-Health Profile (CHP). No single health-care
system stores or manages complete CHP’s. Instead, each system continues to manage its own
data and specifies what parts are to be shared and with whom they can be shared.

In general, the CHARM effort covers both operational and software issues across a broad range
of projects. Some of these projects involve minor enhancements to existing software systems,
while others are developing new systems. However, they all center on a secure distributed
middleware solution, called the CHARM Integration Infrastructure (CHARM-II). The purpose
of this document is to describe the architecture of this infrastructure. We start by giving a brief
overview of CHARM-II, describe how it connects existing and future health-care systems, and
outline the goals that we established before developing its architecture. We then describe the
various components of the CHARM-II architecture.

 2

2. CHARM-II Overview
�

2.1. System Context

CHARM-II is a middleware system that integrates autonomous and heterogeneous health-care
programs so they can share data with minimal impact on existing software. The CHARM-II
software, represented by the center box in Figure 1, does not store program-specific data.
Rather, it retrieves the requested data from the participating health-care programs in near real-
time as it is requested. The outside boxes in Figure 1 represent the information system for some
of these participating programs (PP’s). Those with solid borders are existing systems; while,
those with dashed borders are either currently in development or planned for the near future.

The long-term plan for CHARM includes building Web and PDA interfaces into the system.
These program-independent interfaces, represented by the green boxes at the top of Figure 1, will
allow authorized users access to shared data without having to be logged into one of participating
health systems. As with all use of CHARM-II, access via these additional interfaces will be
secured and audited.

The long-term plan also includes the integration of CHARM with systems outside of UDOH.
For example, it could integrate the information system for the Division of Child and Family
Services (DCFS).

UDOH Data
Warehouse

Data Mart

NEDSS

DCFS

PDA Access
System

Web Access
System

WIC

EHDI

USIIS

BD

EI Medicaid

VS

Heelstick

CHARM
Integration

Infrastructure

Lead
Screening

Figure 1 - CHARM Overview�

 3

2.2. Goals for CHARM-II

A number of specific goals guided definition of requirements for CHARM-II1 and eventually its
architecture and implementation. These goals fall into five main areas: data access; integration
with existing information systems; data ownership and control; privacy, confidentiality and
security; and flexibility and extensibility.

 Data-Access Goals

��Provide consistent, current, and authoritative information about any child born in
Utah or any child who is receiving services from one of the participating health-care
programs.

��Establish a catalog of approved program-independent data attributes. This catalog
defines which data are shared between programs. We call an instance of these data
for a given child a Child Health Profile (CHP).

��Provide access to CHP's in real time or near real time, as client-oriented activities are
being performed, i.e., at the time of encounter.

��Allow users to match children as they are entered in a PP's information system with
persons already known to CHARM.

��Alert users of exceptional conditions for a child as they access that child's CHP.
These conditions can be set or removed by any PP and should be documented in a
manner that does not require users to interpret another program's data.

��Provide efficient transfer of large sets of data between programs. For example, a data
warehouse could retrieve all recently submitted immunization data from USIIS.

 Integration with Existing Information Systems

��Allow any program that wants to participate to do so with minimal impact upon
existing information systems.

��Minimize the impact of real-time data sharing to the performance of a PP's
information system.

��Reduce or eliminate the re-entry of common demographic information that can be
obtained from the CHP for children already known to CHARM.

��Allow PP’s to maintain and enhance their own information systems independent of
CHARM or any other PP.

 Data Stewardship

��Ensure that PP’s retain stewardship of their own data.
��Allow a PP to define which of its own data it is willing to share with others and

describe the data’s intended use and meaning.
��Allow a PP to define security policies that govern who has access to its data.

 Privacy, Confidentiality and Security

��Ensure that clients (parents or guardians of the children known to CHARM) can
choose who can and cannot view the data in their CHP's.

��Ensure that all program and department security policies can be properly enforced.

1 The functional requirements for CHARM-II are given elsewhere, namely in the “Requirements Definition for the
Child-Health Advanced Record Management Integration Infrastructure”

 4

��Keep an audit of who accessed what data, at a CHP, user, and/or data-attribute level.

 Flexibility and Extensibility

��Allow programs wanting to participate to "plug-in" with relative ease.
��Allow CHARM to grow in scope to include children up through age eighteen, and

maybe even beyond.
��Allow CHARM to grow in size (i.e. data and transaction volume) to serve a large

percentage, and ideally all, of the health professionals in the state.
��Eventually, provide clients with secure access to their own information.

2.3. Architectural Overview

CHARM-II is not a single piece of software. Rather, it is itself a collection of distributed
components, each serving a purpose and fulfilling a specific set of requirements. The major
components are as follows:

• a central server, called the CHARM Server
• an agent for each PP, called a CHARM Agent
• an alert-generation engine for each PP

The CHARM Server is responsible for optimizing and executing all queries for the child-health
care data. To support this primary activity, it also uses and manages a catalog of data definitions
and other configuration parameters. It enforces security policies established by the individual
PP’s, keeps an audit trail of all queries, and monitors overall performance. Section 3 describes
the CHARM Server in more detail.

A CHARM Agent for a PP acts as both a client and a server. As a client, it forms queries on
behalf of its PP and submits those queries to the CHARM Server. When it receives the results
of a query, it translates them into a form that is most suitable for the existing software of the PP.
As a server, a CHARM Agent provides services to the central CHARM Server for extracting
information that others might request. Each program is responsible for deciding which of its
own data will be shared and what other programs will be allowed to access that data. Section 4
provides additional details on CHARM Agents.

Every PP can have its own alert engine that generates alert messages for children that need
attention. A program can define its own rules or conditions that cause the generation of alerts.
The alert engine checks those conditions for children as their records change or on a periodic
basis. See Section 5 for more information.

If we look at all the services provided by all the PPs, the collective information available through
these services represents a virtual health record for any given child known to the CHARM
system. We refer to this virtual record as a Child Health Profile (CHP) and the database that
defined its structure as the Catalog. The formation and processing of queries will be based on
this catalog. The Catalog is stored in a database, because we anticipate that it will change over
time. In fact, there may be several versions of the Catalog in use at any given time since the PP’s
may update their information systems as they see fit and not on a synchronized schedule. A

 5

conceptual model, called the CHARM Meta-Model, defines the structure of the Catalog database.
Both the CHARM Meta-Model and the Catalog are fully described with UML models.

To coordinate information among the PP’s, the CHARM Server will manage a small amount of
demographic data for each person known to the system. The part of the server that does this can
be thought of as a special kind of PP and, therefore, will have its own agent. We will refer to this
special agent as the Core Agent and we will call the data that it manages the Core Data. The
content and structure of the Core Data are defined by a UML model called the CHARM Core
Data Model.

 6

3. CHARM Server

3.1. Use Scenarios

Before describing the details of the server, walking through a few of complete use scenarios will
help set the stage. Figure 2 illustrates the most common type of use scenario – the execution of a
query. In this particular scenario, Early Intervention (EI) sends a query to its own agent that
requests the immunization history and the primary-care physician for a child. The agent for EI
translates the raw query and maps the EI’s ID for the child subject to a program-independent
CHARM ID. It then sends the query to the CHARM Server, and more specifically, the Query
Manager component of the CHARM server. The Query Manager executes the query by
determining where to find the requested information, retrieving it from other PPs (in this case
USIIS and Early Hearing Detection and Intervention), and then assembling a final result from
what those programs send back. The Query Manager then sends this final result back to the EI
Agent which in turn makes it available to the EI program.

Figure 3 shows three other common use scenarios for merging, adding, and delete CHP’s. The
first one shows an EI user’s find request, which returns a list of possible matches. After
reviewing the possible matches, the user decides to merge two of them, so a merge request is

Early
Intervention

Early
Intervention

USIISUSIIS

Early Hearing
Detection and
Intervention

Early Hearing
Detection and
Intervention

EI AgentEI Agent

EI Alert
Engine

EI Alert
Engine

USIIS Alert
Engine

USIIS Alert
Engine

USIIS AgentUSIIS Agent

EHDI Alert
Engine

EHDI Alert
Engine

EHDI AgentEHDI Agent

CHARM
Server

CHARM
Server

Participating
Programs

CHARM-II

9. final result 2. transformed query

with session id

6. raw result

4. Service request
5. retrieve requested information

1. raw query with session id

8. final result

7. raw result

4. S
erv

ice
 re

quest

6. raw result

5. retrieve requested information

7. ra
w re

su
lt

Figure 2 - Overview of a query processing scenario

 7

sent to the EI Agent, which translates and forwards it to the CHARM server. The second
scenario (shown in the middle of the figure with the USIIS program) is very similar, except the
user decides to add a new CHP. The third scenario shows the flow of messages for a delete
request.

All these types of requests, as with a query, involve the PP sending messages to its own agent.
The agent translates that message into a standard format and maps program-specific ID’s to
CHARM ID’s and then forwards the message to the CHARM server. The server completes the
request and returns the results to the agents, which makes them available to the PP.

Figure 4 shows a different kind of use scenarios involving the generation of alerts. In this case,
the PP notifies its alert engine that the data for a child has changed. The engine may then request
additional information about that child from the PP. Next, it checks to see if that child meets the
condition of any alert-generation rule identified for that PP. If a child satisfies the condition,
then the alert engine generates an alert as specified by the rest of the rule and sends it to the PP’s
agent. The new alert has to go through the agent, so program-specific data can be translated to
program-independent data. It also helps keep the interface to CHARM-II simple and secure
because the agents are the only components allowed to talk with the server.

Early
Intervention

Early
Intervention

USIISUSIIS

Early Hearing
Detection and
Intervention

Early Hearing
Detection and
Intervention

EI AgentEI Agent

EI Alert
Engine

EI Alert
Engine

USIIS Alert
Engine

USIIS Alert
Engine

USIIS AgentUSIIS Agent

EHDI Alert
Engine

EHDI Alert
Engine

EHDI AgentEHDI Agent

CHARM
Server

CHARM
Server

Participating
Programs

CHARM-II

4. matches 2. transformed find

5. merge child

4. matches

1. find

1. delete child

2. Transformed
find

1. find

5. add child
3. matches

6. add child

2. d
ele

te
ch

ild

3. matches

6. merge child

Figure 3 - Finding, merging, adding, and deleting Child Health Profiles

 8

3.2. CHARM Server Components and Their Interactions

The CHARM Server consists of a number of independent components that can be distributed or
replicated as the need arises. Figure 5 provides a high-level view of these components and
Figures 6 - 10 show how they interact for five use scenarios.

Query Processing

As Figure 6 illustrates, when a query is sent to the server, it first goes to the Query Manager
(message 1). The Query Manager checks authorization for the user by passing the session id sent
with the message to the Security Manager, which in turn retrieves user profile information from
Siteminder. (See messages 2 and 2.1.) Note that Siteminder is not part of CHARM-II. It is the
software that the state ITS department has chosen for managing users and access rights. The
Security Manager returns the user profile to the Query Manager. If the session is valid, then
Query Manager retrieves the query definition from the Catalog (message 3) and compares the
user’s profile against the required access rights for the request query. The Query Manager will
remove anything from the query definition that the user is not allowed to view.

The query definition consists of a query data model, execution strategy, and result-building
strategy. The data model describes the structure of the data that the query will return. The

Earlier
Intervention

Earlier
Intervention

USIISUSIIS

Early Hearing
Detection and
Intervention

Early Hearing
Detection and
Intervention

EI AgentEI Agent

EI Alert
Engine

EI Alert
Engine

USIIS Alert
Engine

USIIS Alert
Engine

USIIS AgentUSIIS Agent

EHDI Alert
Engine

EHDI Alert
Engine

EHDI AgentEHDI Agent

CHARM
Server

CHARM
Server

Participating
Programs

CHARM-II

3. data

1. changes

1. changes

2. request for

more data

1. changes

3. data

2. request for

more data

3. data

2. request for

more data

4. new alert

4. new alert

4. delete alert

5. transformed alert

5. transformed
alert

5.
de

let
e a

ler
t

Figure 4 - Overview of several alert processing scenarios

 9

execution strategy describes what services are needed to retrieve the information and the order in
which they should be called. In general, an execution strategy is a tree of actions where each
action is either a service call or a list of other actions. Lists can differ in how their actions are
executed. For some lists, the actions are all executed concurrently; for others, the actions are
executed sequentially. Also, some lists require all their actions to be completed; whereas, others
only require one action to be completed. The result-building strategy of a query definition
describes how the immediate results returned by the services are combined into a final result.
Like a query strategy, a result-building strategy is a tree of actions. However, the actions for a
result-building strategy specify data transformations instead of services.

In a future version of CHARM-II, the Query Manager will include another component, namely,
an optimizer for constructing the execution and result-building strategies on the fly for ad-hoc
queries.

After retrieving a query definition from the catalog and pruning it according to the user’s access
rights, the Query Manager sends it to the Query Coordinator (message 4). The Query
Coordinator sends a status message to the Query Monitor (if it is running) and then processes the
execution strategy (messages 5 and 6). As intermediate results come back from the services, it
saves those results with the query. Note that the Core Agent in the server can provide certain
kinds of information (mostly demographic information) just like any other agent.

CHARM Server

Query Manager

Result Builder

Query Coordinator

Core Agent
Matcher

PP
Data

Models

Query
Def’s

Data
Mapping

Def’s

CHP
Data

Models

Catalog

Audit
Trail

Auditor

Security
Manager

SiteMinder

Session Info

Matching
Indices

Admin Services

Query Monitor

Direct Service
Executor

Rpt. Generator

Users and
User Profiles
(access rights)

Core
Data

Core Data
Manager

Request Handler

CHP and
Query

Statistics

Stats
Manager

Merger

Deferred
Merges

Deferred Merge
Resolver

Figure 5 – CHARM-II Version 1 Server Components

 10

Messages

1. query(Query Name, Translated Parameters Session Id)
2. validate(Session Id) return success/failure and User Profile
2.1 lookup(User Name) returns User Profile
3. lookup(Query Name) returns Query Definition
4. process(Query)

A Query object is created by Query Manger after its looks the query definition in the Catalog, but
before sending this message. The Query object represents a query in progress and includes a
definition, as well as state information.

5. record(Query)
 Note that the status at this point is “In progress”
6. serviceInvocation(service name, parameters) returns service results
7. buildResult(Query)
8. record(Query)
 Note that the status at this point is “Complete”, “Partial”, or “Failure”
9. returns Query with CHARM Result
10. record(Query)
11. returns CHARM result

Figure 6 – Query Process from a Server Perspective

CHARM Server

Query Manager

Result Builder

Query Coordinator

Core Agent

Query
Def’s

Catalog

Audit
Trail

Auditor

Security
Manager

SiteMinder
Session Info

Admin
Services

Users and
User Profiles
(access rights)

Core
Data

Core Data
ManagerRequest Handler

Intermediate Results

CHP and
Query

Statistics

Stats
Manager

R
eq

ue
st

in
g

A
ge

nt

Query Monitor

1. 4.

3.
2.

2.1.
Se

rv
ic

in
g

A
ge

nt
Se

rv
ic

in
g

A
ge

nt

6.
6.

6.

7.

PP
Data

Models5.

8.9.

6.1.

11.

10

10

 11

Once the Query Coordinator has collected the necessary information or the allotted time elapses,
the Query Coordinator passes the query (and its definition) on to the Result Builder (message 7).
The Result Builder processes the result-building strategy to combine the intermediate results into
a final result. When it is finished, it sends a status message to the Query Monitor (if it is
running) and sends the final result back (see messages 8-11). Note the Query Manager may send
statistics and audit trail information to the Stats Manager and Auditor as it returns the final result,
if those features are enabled.

Finding and Merging Health Care Profiles

From time to time, a PP needs to add new children to its own system and therefore to CHARM.
As part of this process, a user can search CHARM to see if there is already a CHP for the child.
If there is one, the user can choose to simply use that CHP. If for some reason there is more than
one CHP for the same child, the user can merge them into one.

Figure 7 shows the flow of messages involved in finding and merging health CHP’s. First, the
PP’s agent sends a “find” message to the Core Agent in the server (message 1). Next, the Core
Agent checks the validity of the session with the Security Manager and passes requests onto the
Matcher (messages 2, 2.1, and 3). The Matcher searches for similar CHP’s based on the
parameters contained in the find message and creates a set of possibilities ordered “most-likely
first.” It also records statistics and audit trail data if those features are turned on. Note that
these messages are both labeled 3.1 in Figure 6 because they can happen concurrently. The
Matcher returns the set of possibilities to the requesting agent (message 4), which in turn returns
it to the PP.

At this point, this point the PP does whatever it needs to do with the set of possibilities. In most
cases, it would display them to the user and let the user decide whether to use an existing CHP,
merge two or more existing CHP’s, or add a new one.

If the user decides to merge two or more existing CHP’s, the PP sends a merge message back
through its agent (message 5). This merge request will contain information about which fields to
keep from each of the original CHP’s. The Core Agent will receive this message, validate the
session, and pass the message on the Merger (messages 2 and 6). The Core Agent will complete
the merge by changing the necessary information in the core database (message 6.1) and retiring
one of the CHARM ID’s. All future requests to the old ID will be forwarded to the other ID. To
do this, the Core Agents notifies all the agents of a change in the ID mappings (see the 6.1.1
messages). Statistics and audit trail information are saved if these features are turned on (see 6.2
messages).

The addition of a new child to the system is very similar to the above scenarios, except that an
“add” message is sent to the Core Agent instead of a “merge” message.

 12

Messages

1. find(FindObject, Session ID)
 Note that the FindObject includes child search criteria
2. validate(Session ID)
2.1 lookup(User Name)
3. lookup(FindObject) returns FindObject
 Note that the possible matches are added to the FindObject
3.1 record(FindObject)
4. return FindObject
5. merge(MergeObject, Session ID)
 Note that the MergeObject includes all the necessary merge specifications
2. validate(Session ID)
6. merge(MergeObject)
6.1. merge(MergeObject)
6.1.1. merge(MergeObject)
6.2. record(MergeObject)

Figure 7 – Finding matches and Merging Child-Health Profiles

CHARM Server

Core Agent

Audit
Trail

Auditor

Security
Manager

SiteMinder
Session Info

Admin
Services

Users and
User Profiles

(access rights)

CHP and
Query

Statistics

Stats
Manager

R
eq

ue
st

in
g

A
ge

nt

Matcher

Merger

Matching
Indices

Core
Data

Core Data
Manager

Request Handler

ot
he

r a
ge

nt
ot

he
r a

ge
nt

1.

2.

2.1.

3.

3.1.

3.1.

6.

4.

5.

6.2.

6.2.

6.1.

6.1.1.

6.1.1.

6.1.1.

 13

Deferring Merges

In some cases, a user may suspect that two existing CHP’s are the same, but isn’t quite sure. In
these cases, the user can defer the merging of CHP’s until someone else can do some additional
research and resolve the merge request. The same process can be used when a new child needs
be added to the system and the user suspects that an existing CHP is for the same child, but is not
sure. However, in this case, a new CHP is added for the child and the deferred merge is
submitted for that CHP and the suspected duplicate CHP. Figure 8 illustrates the flow of
messages for finding matches and them deferring a merge. Figure 9 shows the resolution of the
deferred merges.

Automatic Duplicate Detection

When the Matcher is not processing requests from agents, it automatically scans the core data for
duplicate CHP’s. In a nutshell, it selects a subject CHP and tries to find matches for that CHP.
If some possibilities are found, it records a deferred merge with the Merger. Later, someone will
make final decisions about the possible matches and resolve those deferred merges.

Adding or Deleting Alerts

The processing of “add” or “delete” alert requests is relatively straightforward. As shown in
Figure 10, a requesting alert engine sends an “add” or “delete” message to the Core Agent. The
Core Agent validates the session (messages 2 and 2.1) and sends the request to the Core Data
Manager (message 3), which makes the change to the core data. The Core Data Manager also
records some statistics via the Stats Manager (message 4), if necessary.

 14

Messages

1. Find(FindObject, Session ID)
 Note that the FindObject includes child search criteria
2. validate(Session ID)
2.1 lookup(User Name)
3. lookup(FindObject) returns FindObject
 Note that the possible matches are added to the FindObject
3.1 record(FindObject)
4. return FindObject
5. deferMerge(MergeObject, Session ID)
 Note that the MergeObject includes all the necessary merge specifications
2. validate(Session ID)
6. deferMerge(MergeObject)

Figure 8 – Finding matches and deferring merges

CHARM Server

Core Agent

Audit
Trail

Auditor

Security
Manager

SiteMinder
Session Info

Admin
Services

Users and
User Profiles

(access rights)

CHP and
Query

Statistics

Stats
Manager

R
eq

ue
st

in
g

A
ge

nt

Matcher

Matching
Indices

Core
Data

Core Data
Manager

Request Handler

Merger

Deferred
Merges

1.

4.

5.

2.

2.1.

3.

3.1.

3.1.

6.

 15

Messages

1. getNextDeferredMatch ()
2. return MergeObject

Note that the Deferred Merge Resolver will need to perform some queries to retrieve enough data
for the two candidate CHP so the user can compare them and decide what (if anything) to merge.

3. merge(MergeObject, Session ID)
4. validate((Session ID)
5. merge(MergeObject)
6. merge(MergeObject)
7. record(MergeObject)

Figure 9 – Resolving deferred merges

CHARM Server

Core Agent

Audit
Trail

Auditor

Security
Manager

SiteMinder
Session Info

Admin
Services

Users and
User Profiles

(access rights)

CHP and
Query

Statistics

Stats
Manager

Core
Data

Core Data
Manager

Merger

Deferred
Merges

Deferred Merge
ResolverC

H
A

R
M

 A
ge

nt
C

H
A

R
M

 A
ge

nt
C

H
A

R
M

 A
ge

nt

1.

2.
3.

5.
4.

4.1.

6.

6.

6.

7.

7.

 16

�

Messages

1. addAlert(Alert, Session ID) or deleteAlert(Alert, Session ID)
 Notes that the Alert object include a CHARM ID, alert type, and alert message.
2. validate(Session ID)
3. addAlert(Alert) or deleteAlert(Alert)
4. record(Alert)

Figure 10 – Adding or Deleting Alerts

CHARM Server

Core Agent

Security
Manager

SiteMinder
Session Info

Admin
Services

Users and
User Profiles

(access rights)

CHP and
Query

Statistics

Stats
Manager

R
eq

ue
st

in
g

A
le

rt
 E

ng
in

e

Core
Data

Core Data
Manager

Request Handler
1.

2.

2.1.

3.

4.

 17

�

4. CHARM Agents
�

4.1. Agent Components
�

Like the CHARM server, an agent consists of several independent components. However, unlike
the server, an agent cannot be distributed or replicated. All the components for a given agent
will run on a single system. Some agents will run on the same system as some components of
the CHARM server. Other agents will run on a PP’s system; and still others might run on an
independent machine.

Figure 11 shows the six primary components of the CHARM agent: PP Interface, Request
Processor, ID Mapper, Catalog Cache, Service Processor, and Admin Interface. The PP
Interface is actually a collection of technology-specific program interfaces for communicating
with PP information systems. For example, the RMI PP Interface provides remote methods for
submitting queries and the retrieving the results of those queries. The Request Processor is
responsible for translating raw requests into program-independent requests, sending that them to
CHARM server, and tracking they completion. It actually consists of two subcomponents: one
for handling queries and for handling all other types of requests (finding, merging, adding, and
deleting CHP; adding and deleting alerts, etc.) The process of translating a raw request into a
program-independent request involves mapping PP ID’s to CHARM ID’s. The Request Process

CHARM Agent

Service Wrapper Service WrapperService Wrapper

ID Mapper

mappings

Service Request
Handler

RMI
Request
Handler

XML
Request
Handler

TCP/IP
Request
Handler

Alert
Request
Handler

Query-Manager
Request Processor

Core-Agent
Request Processor

PP Interface

Service Processor

Request Processor Admin Interface

Data
Transformer

Data Modeler
User Interface

Security
Policy Admin
User Interface

Catalog Cache

data models data
Mapping

def’squery def’s

Figure 11 – Overview of Components the Comprise a CHARM Agent

 18

uses the ID Mapper to do this. It may also need information about the either the structure of PP-
specific data or program-independent data to do the translation. The Request Processor can
access a local Catalog Cache to get the necessary meta-data. The Service Processor is
responsible for handling all service invocations coming from the CHARM Server. Like the
Request Processor, it can access the Catalog Cache to get any meta-data that it needs to invoke
specific PP services or perform data translations.
�

4.2. Agent Interactions
�

Figure 12 shows the processing of a typical query from an agent’s perspective. The requesting
program sends a raw query to its agent via one of the PP Interface modules (message 1). In this
case, the requesting process uses the RMI PP Interface. The RMI PP Interface forwards the
request onto the Query Processor of the Request Processor (message 2), which translates the
request and maps the PP ID to a CHARM ID (message 2.1) and sends the translated query to
Query Manager in the CHARM server. As explained in the previous section, the Query Manager
decides where to get the requested data and invokes the necessary services by sending messages
to Service Request Handlers of one or more other PP Agents (message 4). When a Service
Request Handler in a PP Agent receives service invocation message, it maps CHARM ID’s to PP
ID’s (message 4.1), calls the request PP service via a Service Wrapper (message 4.2), looks up
data mapping definitions in the local Cache Catalog (message 4.3), and then translates the
resulting data from the service call using the mapping definitions (message 4.4). Finally, the
Service Request Handler sends its results back to the Query Coordinator (message 5) which then
combines it with other intermediate results and send the final CHARM result back to the
requesting agent (message 6) and requesting PP (messages 7 and 8).

Figures 13-15 illustrate three other use scenarios from an agent perspective, namely the finding
and merging of child-health profiles, deferring merges, and adding alerts.

 19

Messages

1. query(Query Name, Parameters, Session Id)
2. query(Query Name, Parameters, Session Id)
2.1 translate(Parameters)
3. query(Query Name, Translated Parameters, Session Id)
4. serviceInvocation(service name, parameters)
4.1 mapToPPID(CHARM ID) return PP ID
4.2 call<<service name>>(Translated Parameters) returns result
4.3 lookupDataMappings(service name) returns data mappings
4.4. translate(result, data mappings) returns service result
5. returns service result

Figure 12 – Query processing from a CHARM Agent perspective

Requesting CHARM Agent
ID Mapper

mappings
RMI

Request
Handler

Query-Manager
Request Processor

PP Interface Request Processor

R
eq

ue
st

in
g

PP

Q
ue

ry
 M

an
ag

er

Servicing CHARM Agent

Service Wrapper

ID Mapper

mappings

Service Request
Handler

Service Processor

Data
Transformer

Catalog Cache

data models

data
Mapping

def’s

1. 2.

2.1.

3.

4.

4.1.

4.2.

4.4.

4.3.4.4.1. 5.

6.

7.8.

Se
rv

ic
in

g
PP

4.2.1.

 20

Messages

1. find(Child data, Session Id)
2. find(Child data, Session Id)
3. find(FindObject, Session Id)
 Note that the FindObject includes child search criteria
4. returns FindObject
 The FindObject coming back from the Server includes Possible Matches
5. returns FindObject
6. returns FindObject
7. merge(Merge specification, Session Id)
8. merge(Merge specification, Session Id)
9. merge(MergeObject, Session Id)
10. merge(MergeObject)
10.1. changeIdMapping(CHARM ID 1, CHARM ID 2)

Figure 13 – Finding matches and merging from a CHARM Agent perspective

CHARM Agent

ID Mapper

mappings

RMI
Request
Handler

Core-Agent
Request Processor

PP Interface Request Processor

6.

7.

1. 2. 3.

4.

C
or

e
A

ge
nt

5.

8. 9.

10.
10.1.

R
eq

ue
st

in
g

PP

 21

Messages

1. find(Child data, Session Id)
2. find(Child data, Session Id)
3. find(FindObject, Session Id)
 Note that the FindObject includes child search criteria
4. returns FindObject
 The FindObject coming back from the Server includes Possible Matches
5. returns FindObject
6. returns FindObject
7. defer_merge(Merge specification, Session Id)
8. defer_merge(Merge specification, Session Id)
9. defer_merge(MergeObject, Session Id)

Figure 14 – Finding matches and deferring merges

CHARM Agent

RMI
Request
Handler

Core-Agent
Request Processor

PP Interface Request Processor

6.

7.

1. 2. 3.

4.

C
or

e
A

ge
nt

5.

8. 9.R
eq

ue
st

in
g

PP CHARM Agent

RMI
Request
Handler

Core-Agent
Request Processor

PP Interface Request Processor

6.

7.

1. 2. 3.

4.

C
or

e
A

ge
nt

5.

8. 9.R
eq

ue
st

in
g

PP

 22

Messages

1. add(Alert, Session ID)
 Note that at this point, the Alert object includes a PP ID
2. add(Alert, Session ID)
2.1 mapToCHARMID(PP ID) returns a CHARM ID
 The request process will replace the PP ID in the Alert object with the CHARM ID
3. add(Alert, Session ID)

Figure 15 – Adding alerts from a CHARM Agent perspective

CHARM Agent

ID Mapper

mappings

RMI
Request
Handler

Core-Agent
Request Processor

PP Interface Request Processor

1. 2. 3.

C
or

e
A

ge
nt

R
eq

ue
st

in
g

A
le

rt
 E

ng
in

e

2.1.

 23

5. Alert Engine

Each PP has its own version of the Alert Engine with it own set of custom alert-generation rules
and configuration parameters. However, all the Alert Engines have the same basic components
shown in Figure 16. These include a PP Interface, Alert Generator, Rule Manger, Service
Processor, and Admin Interface. The PP Interface is a collection of program interfaces for
communicating with the PP. For example, when a child’s information changes in a PP’s
information system, it can sent a change notification to its Alert Engine via one of these
interfaces. Depending on the Alert Engine mode of operation, this notification may trigger the
generation of new alerts or the removal of old alerts. The Alert Generator is responsible for
analyzing the status of a child with respect to the conditions stated in the Alert-Generation Rules
and then creating or deleting alerts as needed. To access the rules, it communicates with the
Rule Manager and to access additional information about a child it communicates with its own
Service Request Processor. Once it decides to create or delete an alert, it does so by sending a
request to the PP’s Agent via the Agent Interface.

An Alert Engine can be configured to run on several different modes: immediate, deferred, and
periodic. In the immediate mode, the PP information system notifies the Alert Engine whenever

PP Alert Engine

Service
Wrapper

Service
Wrapper

Service Request
Handler

RMI
PP

Interface

XML
PP

Interface

TCP/IP
PP

Interface

PP Interface

Service Processor

Rule Manager

Admin Interface

Rule
Maintenance

User Interface

Agent Interface
Alert-

Generation
Rules

Alert Request
Handler

Service
Wrapper

Figure 16 – Overview of Alert Engine components

Alert Generator

 24

a child’s data changes. The Alert Engine immediately starts a process to check the status of the
child with respect to the alert conditions and to create/delete alerts as needed. In the deferred
mode, the PP information system still notifies the Alert Engine whenever a child’s data changed,
but the Alert Engine stores that notice in a queue. Then at a later time (like midnight), it
processes all of the changes notices together. In the periodic mode, the PP information system
does not notify the Alert Engine of changes. Rather, the Alert Engine periodical reviews all
children known to the PP with respect to the alert conditions and creates/deletes alerts as needed.

